Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 393: 122324, 2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32135361

RESUMO

Photocatalytic CO2 reforming is considered to be an effective method for clean, low-cost, and environmentally friendly reduction and conversion of CO2 into hydrocarbon fuels by utilizing solar energy. However, the low separation efficiency of charge carriers and deficient reactive sites have severely hampered the efficiency of the photocatalytic CO2 reforming process. Therefore, cocatalysts are usually loaded onto the surface of semiconductor photocatalysts to reduce the recombination of charge carriers and accelerate the rates of surface reactions. Herein, molybdenum (Mo) nanospheres are proposed as a novel non-precious cocatalyst to enhance the photocatalytic CO2 reforming of g-C3N4 significantly. The Mo nanospheres boost the adsorption of CO2 and activate the surface CO2via a photothermal effect. The time-resolved fluorescence decay spectra reveals that the lifetime of photo-induced charge carriers is prolonged by the Mo nanospheres, which guarantees the migration of charge carriers from g-C3N4 to Mo nanospheres. Unexpectedly, Mo loaded g-C3N4 can effectively utilize a wide spectral range from UV to near-infrared region (NIR, up to 800 nm). These findings highlight the potential of Mo nanospheres as a novel cocatalyst for photocatalytic CO2 reforming to CH4.

2.
ACS Appl Mater Interfaces ; 12(13): 15370-15379, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153180

RESUMO

To keep pace with the upcoming big-data era, the development of a device-level neuromorphic system with highly efficient computing paradigms is underway with numerous attempts. Synaptic transistors based on an all-solution processing method have received growing interest as building blocks for neuromorphic computing based on spikes. Here, we propose and experimentally demonstrated the dual operation mode in poly{2,2-(2,5-bis(2-octyldodecyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diyl)dithieno[3,2-b]thiophene-5,5-diyl-alt-thiophen-2,5-diyl}(PDPPBTT)/ZnO junction-based synaptic transistor from ambipolar charge-trapping mechanism to analog the spiking interfere with synaptic plasticity. The heterojunction formed by PDPPBTT and ZnO layers serves as the basis for hole-enhancement and electron-enhancement modes of the synaptic transistor. Distinctive synaptic responses of paired-pulse facilitation (PPF) and paired-pulse depression (PPD) were configured to achieve the training/recognition function for digit image patterns at the device-to-system level. The experimental results indicate the potential application of the ambipolar transistor in future neuromorphic intelligent systems.

3.
Adv Sci (Weinh) ; 5(9): 1800714, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250806

RESUMO

Phototunable biomaterial-based resistive memory devices and understanding of their underlying switching mechanisms may pave a way toward new paradigm of smart and green electronics. Here, resistive switching behavior of photonic biomemory based on a novel structure of metal anode/carbon dots (CDs)-silk protein/indium tin oxide is systematically investigated, with Al, Au, and Ag anodes as case studies. The charge trapping/detrapping and metal filaments formation/rupture are observed by in situ Kelvin probe force microscopy investigations and scanning electron microscopy and energy-dispersive spectroscopy microanalysis, which demonstrates that the resistive switching behavior of Al, Au anode-based device are related to the space-charge-limited-conduction, while electrochemical metallization is the main mechanism for resistive transitions of Ag anode-based devices. Incorporation of CDs with light-adjustable charge trapping capacity is found to be responsible for phototunable resistive switching properties of CDs-based resistive random access memory by performing the ultraviolet light illumination studies on as-fabricated devices. The synergistic effect of photovoltaics and photogating can effectively enhance the internal electrical field to reduce the switching voltage. This demonstration provides a practical route for next-generation biocompatible electronics.

4.
Dalton Trans ; 47(36): 12734-12741, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30141818

RESUMO

Due to the sluggish mobility of holes, the low charge-separation rate remains an intrinsic issue that limits further increase of the photocatalytic conversion efficiency. Herein, we proposed an in situ hydrothermal method to expedite the charge transfer with enhanced photocatalytic H2 evolution rate and photodegradation activities via introducing SnO microplates into TiO2. As compared to bare TiO2, the SnO/TiO2 heterojunction achieves remarkable 470% and 150% higher efficiency for the photocatalytic H2 evolution rate and photodegradation of rhodamine B, respectively. In particular, it is demonstrated that the charge transfer mechanism of SnO/TiO2 can be switched from the Z-scheme to type II by Pt loading, leading to a significant enhancement of photocatalytic performances. Furthermore, the photocatalytic H2 evolution activities of ZnO and C3N4 can also be improved by introducing SnO via simple mechanical mixing. This work provides not only a new versatile stimulant for enhancing photocatalytic activities but also in-depth understanding of the charge transfer mechanism of heterointerfaces of semiconductors.

5.
Adv Mater ; 30(28): e1800327, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29782667

RESUMO

The in-depth understanding of ions' generation and movement inside all-inorganic perovskite quantum dots (CsPbBr3 QDs), which may lead to a paradigm to break through the conventional von Neumann bottleneck, is strictly limited. Here, it is shown that formation and annihilation of metal conductive filaments and Br- ion vacancy filaments driven by an external electric field and light irradiation can lead to pronounced resistive-switching effects. Verified by field-emission scanning electron microscopy as well as energy-dispersive X-ray spectroscopy analysis, the resistive switching behavior of CsPbBr3 QD-based photonic resistive random-access memory (RRAM) is initiated by the electrochemical metallization and valance change. By coupling CsPbBr3 QD-based RRAM with a p-channel transistor, the novel application of an RRAM-gate field-effect transistor presenting analogous functions of flash memory is further demonstrated. These results may accelerate the technological deployment of all-inorganic perovskite QD-based photonic resistive memory for successful logic application.

6.
Small ; 14(28): e1800288, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29806246

RESUMO

Inspired by the highly parallel processing power and low energy consumption of the biological nervous system, the development of a neuromorphic computing paradigm to mimic brain-like behaviors with electronic components based artificial synapses may play key roles to eliminate the von Neumann bottleneck. Random resistive access memory (RRAM) is suitable for artificial synapse due to its tunable bidirectional switching behavior. In this work, a biological spiking synapse is developed with solution processed Au@Ag core-shell nanoparticle (NP)-based RRAM. The device shows highly controllable bistable resistive switching behavior due to the favorable Ag ions migration and filament formation in the composite film, and the good charge trapping and transport property of Au@Ag NPs. Moreover, comprehensive synaptic functions of biosynapse including paired-pulse depression, paired-pulse facilitation, post-tetanic potentiation, spike-time-dependent plasticity, and the transformation from short-term plasticity to long-term plasticity are emulated. This work demonstrates that the solution processed bimetal core-shell nanoparticle-based biological spiking synapse provides great potential for the further creation of a neuromorphic computing system.


Assuntos
Potenciais de Ação/fisiologia , Metais/química , Nanocompostos/química , Nanopartículas/química , Sinapses/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Soluções , Compostos de Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...